Thesis
Homología persistente y α-formas
Autor
Noriega Méndez, Carlos Luis
Institución
Resumen
Resumen La Homología Persistente es una técnica que permite el estudio de la duración de
atributos topológicos. Esta técnica consiste en el cálculo de los números de Betti asociados
a una sucesión de cadenas de complejos y se utiliza para medir la persistencia de clases de
homología a través de la variación de un parámetro específico. La Homología Persistente tiene muchas aplicaciones en computación gráfica, reconocimiento
óptico de los caracteres de un texto, en redes de sensores, en el estudio de
moléculas biológicas, entre otros. El presente trabajo consiste en la aplicación del método de -Formas a la recostrucción
3D. Este método, descrito por Edelsbrunner en,nos permite visualizar o interpretar la
forma que representa una nube de puntos mediante el estudio de la Homología Persistente
asociada a una sucesión de complejos simpliciales. TUTOR: Dr. Mauricio Ángel