versión final del autor
The asymptotic distribution of Andrews’ smallest parts function
Fecha
2015-12Registro en:
1420-8938
10.1007/s00013-015-0831-9
Autor
Banks, Josiah
Barquero Sánchez, Adrián Alberto
Masri, Riad
Sheng, Yan
Institución
Resumen
In this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic formula with a power saving error term for the number of 2-marked Durfee symbols associated to partitions of n. Our method requires that we count the number of Heegner points of discriminant −D < 0 and level N inside an “expanding” rectangle contained in a fundamental domain for Γ0(N).