artículo científico
Venomics of the Duvernoy's gland secretion of the false coral snake Rhinobothryum bovallii (Andersson, 1916) and assessment of venom lethality towards synapsid and diapsid animal models
Fecha
2020Registro en:
1874-3919
10.1016/j.jprot.2020.103882
Autor
Calvete Chornet, Juan José
Bonilla Murillo, Fabián
Granados Martínez, Sofía
Sanz, Libia
Lomonte, Bruno
Sasa Marín, Mahmood
Institución
Resumen
The Duvernoy's gland secretory proteome of the false coral snake Rhinobothryum bovallii (Costa Rica), unveiled applying bottom-up venomics, comprises a handful of toxins belonging to only three protein families, three-finger toxin (3FTx), cysteine-rich secretory protein (CRISP), and snake venom metalloprotease (PIII-SVMP). Except for small differences in the relative abundance of the PIII-SVMPs, which may be due to individual variability, no evidence of geographic variability or ontogenetic changes was found among the venom proteomes of the juvenile and adult R. bovallii snakes sampled. Major monomeric (86.5%mol) and minor dimeric (2.8%mol) 3FTxs dominate the toxin arsenal of the Costa Rican false coral snake. The remaining 10.7% of the venom proteome comprises CRISP (8.2%) and PIII-SVMP (2.4%) molecules. In vivo lethality assays showed that R. bovallii produces venom that is non-toxic towards mammalian prey, and which exerts a different toxic effect on domestic chicken chicks and baby green iguana. Toxicovenomic analysis of R. bovallii venom in the iguana model identified two 3FTx RP-HPLC fractions that faithfully mimicked the irreversible immobilizing effect of the whole venom.