dc.date.accessioned2022-05-20T20:45:06Z
dc.date.accessioned2022-10-19T00:41:18Z
dc.date.available2022-05-20T20:45:06Z
dc.date.available2022-10-19T00:41:18Z
dc.date.created2022-05-20T20:45:06Z
dc.date.issued2017
dc.date.issued2017
dc.identifierhttp://hdl.handle.net/10533/253871
dc.identifier1160455
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4485023
dc.description.abstractCat swarm optimization (CSO) is a novel metaheuristic based on swarm intelligence, presented in 2006 has demonstrated great potential generating good results and excellent performances simulating the behavior of domestic cats using two behavior: seeking and tracing mode, this mode are classified using a mixture rate (MR), this parameter finally defines the number of individuals who work by exploring and exploiting. This work presents an improvement structure of a binary cat swarm optimization using a total reboot of the population when loss diversity it is detected. Keywords: Metaheuristics · Combinatorial Optimization · Diversity loss
dc.languageeng
dc.relationComputational Methods in Systems and Software
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.rightshttp://creativecommons.org/licenses/by/3.0/cl/
dc.titleSolving the Set Covering Problem Using Cat Swarm Optimization Algorithm with a Variable Mixture Rate and Population Restart


Este ítem pertenece a la siguiente institución