dc.date.accessioned2021-08-23T22:58:06Z
dc.date.accessioned2022-10-19T00:29:13Z
dc.date.available2021-08-23T22:58:06Z
dc.date.available2022-10-19T00:29:13Z
dc.date.created2021-08-23T22:58:06Z
dc.date.issued2017
dc.identifierhttp://hdl.handle.net/10533/252196
dc.identifier1150115
dc.identifierWOS:000401257400018
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4483459
dc.description.abstractWe study a recent general criterion for the injectivity of the conformal immersion of a Riemannian manifold into higher dimensional Euclidean space, and show how it gives rise to important conditions for Weierstrass-Enneper lifts defined in the unit disk endowed with a conformal metric. Among the corollaries, we obtain a Becker type condition and a sharp condition depending on the Gaussian curvature and the diameter for an immersed geodesically convex minimal disk in to be embedded. Extremal configurations for the criteria are also determined, and can only occur on a catenoid. For non-extremal configurations, we establish fibrations of space by circles in domain and range that give a geometric analogue of the Ahlfors-Weill extension.
dc.languageeng
dc.relationhttps://hal.archives-ouvertes.fr/hal-01138388v2/document
dc.relationhandle/10533/111557
dc.relation10.1007/s11856-017-1505-z
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleInjectivity of minimal immersions and homeomorphic extensions to space
dc.typeArticulo


Este ítem pertenece a la siguiente institución