dc.date.accessioned2021-08-23T22:57:15Z
dc.date.accessioned2022-10-19T00:27:51Z
dc.date.available2021-08-23T22:57:15Z
dc.date.available2022-10-19T00:27:51Z
dc.date.created2021-08-23T22:57:15Z
dc.date.issued2018
dc.identifierhttp://hdl.handle.net/10533/252013
dc.identifier1151441
dc.identifierWOS:000467256000005
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4483276
dc.description.abstractThe paper considers very general multivariate modifications of Cramer-Lundberg risk model. The claims can be of different types and can arrive in groups. The groups arrival processes have constant intensities. The counting groups processes are dependent multivariate compound Poisson processes of Type I. We allow empty groups and show that in that case we can find stochastically equivalent Cramer-Lundberg model with non-empty groups. The investigated model generalizes the risk model with common shocks, the Poisson risk process of order k, the Poisson negative binomial, the Polya-Aeppli, the Polya-Aeppli of order k among others. All of them with one or more types of policies. The numerical characteristics, Cramer-Lundberg approximations, and probabilities of ruin are derived. During the paper, we show that the theory of these risk models intrinsically relates to the special types of integro differential equations. The probability solutions to such differential equations provide new insights, typically overseen from the standard point of view.
dc.languageeng
dc.relationhttps://doi.org/10.1080/07362994.2018.1471403
dc.relationhandle/10533/111557
dc.relation10.1080/07362994.2018.1471403
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleOn multivariate modifications of Cramer-Lundberg risk model with constant intensities
dc.typeArticulo


Este ítem pertenece a la siguiente institución