dc.date.accessioned2021-08-23T22:55:04Z
dc.date.accessioned2022-10-19T00:24:15Z
dc.date.available2021-08-23T22:55:04Z
dc.date.available2022-10-19T00:24:15Z
dc.date.created2021-08-23T22:55:04Z
dc.date.issued2017
dc.identifierhttp://hdl.handle.net/10533/251542
dc.identifier1151180
dc.identifierWOS:000413115900009
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4482805
dc.description.abstractIn this paper we study existence of solutions of nonlocal Dirichlet problems that include a coercive gradient term, whose scaling strictly dominates the one of the integro-differential operator. For such problems the stronger effect of the gradient term may give rise to solutions not attaining the boundary data or discontinuous solutions on the boundary. Our main result states that under suitable conditions over the right-hand side and boundary data, there is a (unique) Holder continuous viscosity solution attaining the boundary data in the classical sense. This result is accomplished by the construction of suitable barriers which, as a byproduct, lead to regularity results up to the boundary for the solution.
dc.languageeng
dc.relationhttps://doi.org/10.1007/s00208-016-1481-3
dc.relationhandle/10533/111557
dc.relation10.1007/s00208-016-1481-3
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleContinuous viscosity solutions for nonlocal Dirichlet problems with coercive gradient terms
dc.typeArticulo


Este ítem pertenece a la siguiente institución