dc.date.accessioned2021-08-23T22:54:17Z
dc.date.accessioned2022-10-19T00:22:47Z
dc.date.available2021-08-23T22:54:17Z
dc.date.available2022-10-19T00:22:47Z
dc.date.created2021-08-23T22:54:17Z
dc.date.issued2015
dc.identifierhttp://hdl.handle.net/10533/251360
dc.identifier1150003
dc.identifierWOS:000361347100005
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4482623
dc.description.abstractRecently, Barraza-Rojas have described the action of the full automorphisms group on the Fermat curve of degree p, for p a prime integer, and obtained the group algebra decomposition of the corresponding Jacobian variety. In this short note, we observe that the factors in such a decomposition are given by the Jacobian varieties of certain p-gonal curves. Author Keywords:Fermat curves
dc.description.abstractJacobian variety
dc.languageeng
dc.relationhttps://doi.org/10.1007/s00013-015-0815-9
dc.relationhandle/10533/111557
dc.relation10.1007/s00013-015-0815-9
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleA remark on the decomposition of the Jacobian variety of Fermat curves of prime degree
dc.typeArticulo


Este ítem pertenece a la siguiente institución