dc.date.accessioned2021-08-23T22:52:02Z
dc.date.accessioned2022-10-19T00:19:10Z
dc.date.available2021-08-23T22:52:02Z
dc.date.available2022-10-19T00:19:10Z
dc.date.created2021-08-23T22:52:02Z
dc.date.issued2018
dc.identifierhttp://hdl.handle.net/10533/250893
dc.identifier1150058
dc.identifierWOS:000433044000004
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4482156
dc.description.abstractIn this paper we study the geodesic flow for a particular class of Riemannian non-compact manifolds with variable pinched negative sectional curvature. For a sequence of invariant measures we are able to prove results relating the loss of mass and bounds on the measure entropies. We compute the entropy contribution of the cusps. We develop and study the corresponding thermodynamic formalism. We obtain certain regularity results for the pressure of a class of potentials. We prove that the pressure is real analytic until it undergoes a phase transition, after which it becomes constant. Our techniques are based on the one hand on symbolic methods and Markov partitions, and on the other on geometric techniques and approximation properties at the level of groups. Keywords. KeyWords Plus:COUNTABLE MARKOV SHIFTS
dc.description.abstractNEGATIVELY CURVED MANIFOLDS
dc.description.abstractSUSPENSION FLOWS
dc.description.abstractTHERMODYNAMIC FORMALISM
dc.description.abstractEQUILIBRIUM MEASURES
dc.description.abstractSYMBOLIC DYNAMICS
dc.description.abstractKLEINIAN-GROUPS
dc.description.abstractGIBBS MEASURES
dc.description.abstractMAPS
dc.description.abstractPARTITIONS
dc.languageeng
dc.relationhttps://dialnet.unirioja.es/descarga/articulo/6703328.pdf
dc.relationhandle/10533/111557
dc.relation10.1007/s11856-018-1670-8
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleEntropy in the cusp and phase transitions for geodesic flows
dc.typeArticulo


Este ítem pertenece a la siguiente institución