dc.date.accessioned2021-08-23T22:51:51Z
dc.date.accessioned2022-10-19T00:18:52Z
dc.date.available2021-08-23T22:51:51Z
dc.date.available2022-10-19T00:18:52Z
dc.date.created2021-08-23T22:51:51Z
dc.date.issued2016
dc.identifierhttp://hdl.handle.net/10533/250854
dc.identifier1150806
dc.identifierWOS:000377962500105
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4482117
dc.description.abstractA new type of collective excitations, due to the topology of a complex random network that can be characterized by a fractal dimension D-F, is investigated. We show analytically that these excitations generate phase transitions due to the non-periodic topology of the D-F > 1 complex network. An Ising system, with long range interactions, is studied in detail to support the claim. The analytic treatment is possible because the evaluation of the partition function can be decomposed into closed factor loops, in spite of the architectural complexity. The removal of the infrared divergences leads to an unconventional phase transition, with spin correlations that are robust against thermal fluctuations. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. KeyWords Plus:2 DIMENSIONS; ORDER; MODEL
dc.languageeng
dc.relationhttps://doi.org/10.1063/1.4942826
dc.relationhandle/10533/111557
dc.relation10.1063/1.4942826
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleTopological phase transition of a fractal spin system: The relevance of the network complexity
dc.typeArticulo


Este ítem pertenece a la siguiente institución