dc.date.accessioned2021-08-23T22:51:42Z
dc.date.accessioned2022-10-19T00:18:40Z
dc.date.available2021-08-23T22:51:42Z
dc.date.available2022-10-19T00:18:40Z
dc.date.created2021-08-23T22:51:42Z
dc.date.issued2017
dc.identifierhttp://hdl.handle.net/10533/250827
dc.identifier1150056
dc.identifierWOS:000389135600006
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4482090
dc.description.abstractWe present and analyze a nonconforming domain decomposition approximation for a hypersingular operator governed by the Helmholtz equation in three dimensions. This operator appears when considering the corresponding Neumann problem in unbounded domains exterior to open surfaces. We consider small wave numbers and low-order approximations with Nitsche coupling across interfaces. Under appropriate assumptions on mapping properties of the weakly singular and hypersingular operators with Helmholtz kernel, we prove that this method converges almost quasioptimally, that is, with optimal orders reduced by an arbitrarily small positive number. Numerical experiments confirm our error estimate. (c) 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 125-141, 2017. Keywords. Author Keywords:boundary element method
dc.description.abstractdomain decomposition
dc.description.abstractHelmholtz problem
dc.description.abstracthypersingular operator
dc.description.abstractNitsche method
dc.languageeng
dc.relationhttp://www.observatoriodocente.cl/download.php?file=recursos/Perfiles_Motivacionales.pdf
dc.relationhandle/10533/111557
dc.relation10.1002/num.22077
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleA nonconforming domain decomposition approximation for the Helmholtz screen problem with hypersingular operator
dc.typeArticulo


Este ítem pertenece a la siguiente institución