dc.date.accessioned2021-08-23T22:50:56Z
dc.date.accessioned2022-10-19T00:17:40Z
dc.date.available2021-08-23T22:50:56Z
dc.date.available2022-10-19T00:17:40Z
dc.date.created2021-08-23T22:50:56Z
dc.date.issued2018
dc.identifierhttp://hdl.handle.net/10533/250698
dc.identifier1150719
dc.identifierWOS:000425919400010
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4481961
dc.description.abstractRecently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials described by higher degree forms. In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy can be constructed from an algebraic structure known as free differential algebra. In other words, we show that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with p >= 2, can be obtained by gauging free differential algebras. (C) 2017 The Author(s). Published by Elsevier B.V.
dc.languageeng
dc.relationhttps://doi.org/10.1016/j.nuclphysb.2017.10.026
dc.relationhandle/10533/111557
dc.relation10.1016/j.nuclphysb.2017.10.026
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleExtended gauge theory and gauged free differential algebras
dc.typeArticulo


Este ítem pertenece a la siguiente institución