dc.date.accessioned2021-08-23T22:50:35Z
dc.date.accessioned2022-10-19T00:17:11Z
dc.date.available2021-08-23T22:50:35Z
dc.date.available2022-10-19T00:17:11Z
dc.date.created2021-08-23T22:50:35Z
dc.date.issued2018
dc.identifierhttp://hdl.handle.net/10533/250634
dc.identifier1150691
dc.identifierWOS:000451849500002
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4481897
dc.description.abstractLet G be a countable group. We show there is a topological relationship between the space CO(G) of circular orders on G and the moduli space of actions of G on the circle; and an analogous relationship for spaces of left orders and actions on the line. In particular, we give a complete characterization of isolated left and circular orders in terms of strong rigidity of their induced actions of G on S-1- and R. As an application of our techniques, we give an explicit construction of infinitely many nonconjugate isolated points in the spaces CO (F-2n ) of circular orders on free groups, disproving a conjecture from Baik-Samperton, and infinitely many nonconjugate isolated points in the space of left orders on the pure braid group P-3 , answering a question of Navas. We also give a detailed analysis of circular orders on free groups, characterizing isolated orders. Keywords. Author Keywords:Orderable groups; actions on the circle; spaces of orders. KeyWords Plus:SPACES
dc.languageeng
dc.relationhttps://doi.org/10.5802/aif.3191
dc.relationhandle/10533/111557
dc.relation10.5802/aif.3191
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleGroup orderings, dynamics and rigidity
dc.typeArticulo


Este ítem pertenece a la siguiente institución