dc.date.accessioned2021-08-23T22:48:46Z
dc.date.accessioned2022-10-19T00:13:58Z
dc.date.available2021-08-23T22:48:46Z
dc.date.available2022-10-19T00:13:58Z
dc.date.created2021-08-23T22:48:46Z
dc.date.issued2016
dc.identifierhttp://hdl.handle.net/10533/250212
dc.identifier1150480
dc.identifierWOS:000381983800024
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4481475
dc.description.abstractWe study the asymptotic stability of traveling fronts and the front's velocity selection problem for the time-delayed monostable equation with Lipschitz continuous reaction term . We also assume that g is -smooth in some neighbourhood of the equilibria 0 and to . In difference with the previous works, we do not impose any convexity or subtangency condition on the graph of g so that equation can possess the pushed traveling fronts. Our first main result says that the non-critical wavefronts of with monotone g are globally nonlinearly stable. In the special and easier case when the Lipschitz constant for g coincides with , we prove a series of results concerning the exponential (asymptotic) stability of non-critical (respectively, critical) fronts for the monostable model . As an application, we present a criterion of the absolute global stability of non-critical wavefronts to the diffusive non-monotone Nicholson's blowflies equation.
dc.languageeng
dc.relationhttps://doi.org/10.1007/s10884-015-9482-6
dc.relationhandle/10533/111557
dc.relation10.1007/s10884-015-9482-6
dc.relationhandle/10533/111541
dc.relationhandle/10533/108045
dc.rightsinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleSpeed Selection and Stability of Wavefronts for Delayed Monostable Reaction-Diffusion Equations
dc.typeArticulo


Este ítem pertenece a la siguiente institución