dc.date.accessioned | 2020-08-14T20:43:22Z | |
dc.date.accessioned | 2022-10-18T23:41:39Z | |
dc.date.available | 2020-08-14T20:43:22Z | |
dc.date.available | 2022-10-18T23:41:39Z | |
dc.date.created | 2020-08-14T20:43:22Z | |
dc.date.issued | 2008 | |
dc.identifier | http://hdl.handle.net/10533/246033 | |
dc.identifier | 15000001 | |
dc.identifier | WOS:000255970600004 | |
dc.identifier | no scielo | |
dc.identifier | eid=2-s2.0-41549137980 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4477320 | |
dc.description.abstract | Given an arbitrary graph and a proper interval graph with we say that H is a proper interval completion of G. The graph H is called a minimal proper interval completion of G if, for any sandwich graph with , is not a proper interval graph. In this paper we give a time algorithm computing a minimal proper interval completion of an arbitrary graph. The output is a proper interval model of the completion. | |
dc.language | eng | |
dc.relation | https://www.sciencedirect.com/science/article/pii/S0020019007003171 | |
dc.relation | 10.1016/j.ipl.2007.11.013 | |
dc.relation | instname: ANID | |
dc.relation | reponame: Repositorio Digital RI2.0 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Minimal proper interval completions | |
dc.type | Articulo | |