dc.date.accessioned2020-08-14T20:43:22Z
dc.date.accessioned2022-10-18T23:41:39Z
dc.date.available2020-08-14T20:43:22Z
dc.date.available2022-10-18T23:41:39Z
dc.date.created2020-08-14T20:43:22Z
dc.date.issued2008
dc.identifierhttp://hdl.handle.net/10533/246033
dc.identifier15000001
dc.identifierWOS:000255970600004
dc.identifierno scielo
dc.identifiereid=2-s2.0-41549137980
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4477320
dc.description.abstractGiven an arbitrary graph and a proper interval graph with we say that H is a proper interval completion of G. The graph H is called a minimal proper interval completion of G if, for any sandwich graph with , is not a proper interval graph. In this paper we give a time algorithm computing a minimal proper interval completion of an arbitrary graph. The output is a proper interval model of the completion.
dc.languageeng
dc.relationhttps://www.sciencedirect.com/science/article/pii/S0020019007003171
dc.relation10.1016/j.ipl.2007.11.013
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleMinimal proper interval completions
dc.typeArticulo


Este ítem pertenece a la siguiente institución