dc.date.accessioned2020-08-14T20:43:06Z
dc.date.accessioned2022-10-18T23:41:01Z
dc.date.available2020-08-14T20:43:06Z
dc.date.available2022-10-18T23:41:01Z
dc.date.created2020-08-14T20:43:06Z
dc.date.issued2000
dc.identifierhttp://hdl.handle.net/10533/245948
dc.identifier15000001
dc.identifierWOS:000165838200002
dc.identifierno scielo
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4477235
dc.description.abstractThe “heavy ball with friction” dynamical system u¨+γu˙+∇Φ(u)=0 is a non-linear oscillator with damping (γ > 0). In [2], Alvarez proved that when H is a real Hilbert space and Ф : H → ℝ is a smooth convex function whose minimal value is achieved, then each trajectory t → u (t) of this system weakly converges towards a minimizer of Ф. We prove a similar result in the convex constrained case by considering the corresponding gradient-projection dynamical system u¨+γu˙+u−projC(u−μ∇Φ(u))=0, , where C is a closed convex subset of H. This result holds when H is a possibly infinite dimensional space, and extends, by using different technics, previous results by Antipin [1].
dc.languageeng
dc.relationhttps://link.springer.com/chapter/10.1007/978-3-642-57014-8_2
dc.relationno tiene
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleThe heavy ball with friction dynamical system for convex constrained minimization problems
dc.typeArticulo


Este ítem pertenece a la siguiente institución