dc.date.accessioned2020-08-14T20:43:05Z
dc.date.accessioned2022-10-18T23:40:59Z
dc.date.available2020-08-14T20:43:05Z
dc.date.available2022-10-18T23:40:59Z
dc.date.created2020-08-14T20:43:05Z
dc.date.issued2000
dc.identifierhttp://hdl.handle.net/10533/245944
dc.identifier15000001
dc.identifierWOS:000166320300002
dc.identifierno scielo
dc.identifierWOS:000166320300002
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4477231
dc.description.abstractThe purpose of this paper is to study the continuous dependence of solutions of variational inequalities with respect to perturbations of the data that are maximal monotone operators and closed convex functions. The constraint sets are defined by a finite number of linear equalities and non linear convex inequalities. Primal and dual stability results are given, extending the classical ones for optimization problems.
dc.languageeng
dc.relationhttps://link.springer.com/article/10.1023/A:1026594114013
dc.relation10.1023/A:1026594114013
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePrimal and dual stability results for variational inequalities
dc.typeArticulo


Este ítem pertenece a la siguiente institución