dc.date.accessioned | 2020-03-11T20:37:55Z | |
dc.date.accessioned | 2022-10-18T23:07:09Z | |
dc.date.available | 2020-03-11T20:37:55Z | |
dc.date.available | 2022-10-18T23:07:09Z | |
dc.date.created | 2020-03-11T20:37:55Z | |
dc.date.issued | 2012 | |
dc.identifier | http://hdl.handle.net/10533/241447 | |
dc.identifier | 15090007 | |
dc.identifier | WOS:000308019200006 | |
dc.identifier | no scielo | |
dc.identifier | eid=2-s2.0-84865569505 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4472786 | |
dc.description.abstract | MOTIVATION:Massive amounts of genome-wide gene expression data have become available, motivating the development of computational approaches that leverage this information to predict gene function. Among successful approaches, supervised machine learning | |
dc.language | eng | |
dc.relation | https://doi.org/10.1093/bioinformatics/bts455 | |
dc.relation | 10.1093/bioinformatics/bts455 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.title | Discriminative local subspaces in gene expression data for effective gene function prediction | |
dc.type | Articulo | |