dc.date.accessioned | 2020-03-11T20:35:12Z | |
dc.date.accessioned | 2022-10-18T23:00:03Z | |
dc.date.available | 2020-03-11T20:35:12Z | |
dc.date.available | 2022-10-18T23:00:03Z | |
dc.date.created | 2020-03-11T20:35:12Z | |
dc.date.issued | 2004 | |
dc.identifier | http://hdl.handle.net/10533/240518 | |
dc.identifier | 11980002 | |
dc.identifier | WOS:000224217100003 | |
dc.identifier | no scielo | |
dc.identifier | eid=2-s2.0-4644283093 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4471857 | |
dc.description.abstract | We study analytically a system sustaining stable moving localized structures, namely, the one-dimensional quintic complex Ginzburg–Landau (G–L) equation with non-linear gradients. We obtain approximate solutions for the stable moving pulse and its velocit | |
dc.language | eng | |
dc.relation | https://doi.org/10.1016/j.physa.2004.04.053 | |
dc.relation | 10.1016/j.physa.2004.04.053 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.title | On the moving pulse solutions in systems with broken parity | |
dc.type | Articulo | |