dc.date.accessioned2020-03-11T20:35:12Z
dc.date.accessioned2022-10-18T23:00:03Z
dc.date.available2020-03-11T20:35:12Z
dc.date.available2022-10-18T23:00:03Z
dc.date.created2020-03-11T20:35:12Z
dc.date.issued2004
dc.identifierhttp://hdl.handle.net/10533/240518
dc.identifier11980002
dc.identifierWOS:000224217100003
dc.identifierno scielo
dc.identifiereid=2-s2.0-4644283093
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4471857
dc.description.abstractWe study analytically a system sustaining stable moving localized structures, namely, the one-dimensional quintic complex Ginzburg–Landau (G–L) equation with non-linear gradients. We obtain approximate solutions for the stable moving pulse and its velocit
dc.languageeng
dc.relationhttps://doi.org/10.1016/j.physa.2004.04.053
dc.relation10.1016/j.physa.2004.04.053
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleOn the moving pulse solutions in systems with broken parity
dc.typeArticulo


Este ítem pertenece a la siguiente institución