dc.date.accessioned2020-03-11T20:33:04Z
dc.date.accessioned2022-10-18T22:55:13Z
dc.date.available2020-03-11T20:33:04Z
dc.date.available2022-10-18T22:55:13Z
dc.date.created2020-03-11T20:33:04Z
dc.date.issued2016
dc.identifierhttp://hdl.handle.net/10533/239895
dc.identifier15130015
dc.identifierWOS:000375679400006
dc.identifierno scielo
dc.identifiereid=2-s2.0-84930606407
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4471234
dc.description.abstractOver recent decades, remote sensing has emerged as an effective tool for improving agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using
dc.languageeng
dc.relationhttps://doi.org/10.1007/s10844-015-0365-4
dc.relation10.1007/s10844-015-0365-4
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleLocal optimal scale in a hierarchical segmentation method for satellite images: An OBIA approach for the agricultural landscape
dc.typeArticulo


Este ítem pertenece a la siguiente institución