dc.date.accessioned | 2020-03-11T20:33:04Z | |
dc.date.accessioned | 2022-10-18T22:55:13Z | |
dc.date.available | 2020-03-11T20:33:04Z | |
dc.date.available | 2022-10-18T22:55:13Z | |
dc.date.created | 2020-03-11T20:33:04Z | |
dc.date.issued | 2016 | |
dc.identifier | http://hdl.handle.net/10533/239895 | |
dc.identifier | 15130015 | |
dc.identifier | WOS:000375679400006 | |
dc.identifier | no scielo | |
dc.identifier | eid=2-s2.0-84930606407 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4471234 | |
dc.description.abstract | Over recent decades, remote sensing has emerged as an effective tool for improving agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using | |
dc.language | eng | |
dc.relation | https://doi.org/10.1007/s10844-015-0365-4 | |
dc.relation | 10.1007/s10844-015-0365-4 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.title | Local optimal scale in a hierarchical segmentation method for satellite images: An OBIA approach for the agricultural landscape | |
dc.type | Articulo | |