dc.date.accessioned2020-03-11T20:30:26Z
dc.date.accessioned2022-10-18T22:49:02Z
dc.date.available2020-03-11T20:30:26Z
dc.date.available2022-10-18T22:49:02Z
dc.date.created2020-03-11T20:30:26Z
dc.date.issued2014
dc.identifierhttp://hdl.handle.net/10533/239100
dc.identifier15110019
dc.identifierWOS:000331545600007
dc.identifierno scielo
dc.identifiereid=2-s2.0-84893150308
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4470439
dc.description.abstractIn this paper a class of hybrid-fuzzy models is presented, where binary membership functions are used to capture the hybrid behavior. We describe a hybrid-fuzzy identification methodology for non-linear hybrid systems with mixed continuous and discrete st
dc.languageeng
dc.relationhttps://doi.org/10.1016/j.asoc.2013.12.011
dc.relation10.1016/j.asoc.2013.12.011
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleHybrid-fuzzy modeling and identification
dc.typeArticulo


Este ítem pertenece a la siguiente institución