dc.date.accessioned2019-08-12T19:50:40Z
dc.date.accessioned2022-10-18T22:28:55Z
dc.date.available2019-08-12T19:50:40Z
dc.date.available2022-10-18T22:28:55Z
dc.date.created2019-08-12T19:50:40Z
dc.date.issued2019
dc.identifierhttp://hdl.handle.net/10533/236447
dc.identifier1150732
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4467791
dc.description.abstractLet Y be a smooth del Pezzo variety of dimension n ≥ 3, i.e. a smooth complex projective variety endowed with an ample divisor H such that −KY = (n − 1)H. Let d be the degree Hn of Y and assume that d ≤ 4. Consider a linear subsystem of |H| whose base locus is zero-dimensional of length d. The subsystem defines a rational map onto Pn−1 and, under some mild extra hypothesis, the general pseudofibers are elliptic curves. We study the elliptic fibration X → Pn−1 obtained by resolving the indeterminacy and call the variety X a del Pezzo elliptic variety. Extending the results of [7] we mainly prove that the Mordell-Weil group of the fibration is finite if and only if the Cox ring of X is finitely generated. Mathematics Subject Classification (2010): 14C20 (primary); 14Q15, 14E05, 14N25 (secondary).
dc.languageeng
dc.relationinfo:eu-repo/grantAgreement//1150732
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93482
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.titleDel Pezzo elliptic varieties of degree d <=4
dc.typeManuscrito


Este ítem pertenece a la siguiente institución