dc.contributorHernández-Álvarez, Sergio
dc.contributorUNIVERSIDAD CATOLICA DEL MAULE
dc.date.accessioned2019-03-12T19:50:52Z
dc.date.accessioned2022-10-18T22:02:16Z
dc.date.available2019-03-12T19:50:52Z
dc.date.available2022-10-18T22:02:16Z
dc.date.created2019-03-12T19:50:52Z
dc.date.issued2018
dc.identifierhttp://hdl.handle.net/10533/232988
dc.identifier22170718
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4464347
dc.description.abstractEstimating predictive uncertainty is crucial for many computer vision tasks, from image classification to autonomous driving systems. Hamiltonian Monte Carlo (HMC) is an sampling method for performing Bayesian inference. On the other hand, Dropout regularization has been proposed as an approximate model averaging technique that tends to improve generalization in large scale models such as deep neural networks. Although, HMC provides convergence guarantees for most standard Bayesian models, it does not handle discrete parameters arising from Dropout regularization. In this paper, we present a robust methodology for improving predictive uncertainty in classification problems, based on Dropout and Hamiltonian Monte Carlo. Even though Dropout induces a non-smooth energy function with no such convergence guarantees, the resulting discretization of the Hamiltonian proves empirical success. The proposed method allows to effectively estimate the predictive accuracy and to provide better generalization for difficult test examples.
dc.relationinfo:eu-repo/grantAgreement//22170718
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93488
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.rightshttp://creativecommons.org/licenses/by-sa/3.0/cl/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-ShareAlike 3.0 Chile
dc.titlePredictive Uncertainty in Classification using Dropout - Stochastic Gradient Hamiltonian Monte Carlo
dc.typeTesis Magíster


Este ítem pertenece a la siguiente institución