dc.date.accessioned | 2018-12-07T13:33:28Z | |
dc.date.accessioned | 2022-10-18T21:58:34Z | |
dc.date.available | 2018-12-07T13:33:28Z | |
dc.date.available | 2022-10-18T21:58:34Z | |
dc.date.created | 2018-12-07T13:33:28Z | |
dc.date.issued | . | |
dc.date.issued | 2016 | |
dc.identifier | http://hdl.handle.net/10533/232523 | |
dc.identifier | 1151441 | |
dc.identifier | WOS:000372690500007 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4463878 | |
dc.description.abstract | The main problem of ecological data modeling is their interpretation and its correct understanding. This problem cannot be solved solely by a big data collection. To sufficiently understand ecosystems we need to know how these processes behave and how the | |
dc.relation | https://www.sciencedirect.com/science/article/pii/S1476945X1500121X | |
dc.relation | https://doi.org/10.1016/j.ecocom.2015.12.003 | |
dc.relation | handle/10533/111557 | |
dc.relation | 10.1016/j.ecocom.2015.12.003 | |
dc.relation | handle/10533/111541 | |
dc.relation | handle/10533/108045 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.title | Missing chaos in global climate change data interpreting? | |
dc.type | Articulo | |