dc.creator | Dong, Qian | |
dc.creator | Sun, Guo-Hua | |
dc.creator | He, Bing [Ctr Opt & Informac Cuant, Univ Mayor, Chile] | |
dc.creator | Dong, Shi-Hai | |
dc.date.accessioned | 2021-02-05T19:41:39Z | |
dc.date.accessioned | 2022-10-18T18:42:55Z | |
dc.date.available | 2021-02-05T19:41:39Z | |
dc.date.available | 2022-10-18T18:42:55Z | |
dc.date.created | 2021-02-05T19:41:39Z | |
dc.date.issued | 2020-11 | |
dc.identifier | Dong, Q., Sun, GH., He, B. et al. Semi-exact solutions of sextic potential plus a centrifugal term. J Math Chem 58, 2197–2203 (2020). https://doi.org/10.1007/s10910-020-01169-4 | |
dc.identifier | 0259-9791 | |
dc.identifier | eISSN: 1572-8897 | |
dc.identifier | http://repositorio.umayor.cl/xmlui/handle/sibum/7342 | |
dc.identifier | https://link.springer.com/article/10.1007/s10910-020-01169-4#citeas | |
dc.identifier | https://doi.org/10.1007/s10910-020-01169-4 | |
dc.identifier | 10.1007/s10910-020-01169-4 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4455126 | |
dc.description.abstract | We revisit the one-dimensional quantum system of a sextic potential added with a centrifugal term, V(x)=ax(-2)+bx(2)+cx(4)+dx(6), where the parameters a,b,c and d are arbitrary. We find that its solutions can be expressed as a Biconfluent Heun function H-B(alpha,beta,gamma,delta z), while the associated energy spectrum is determined by the parameter delta. The semi-exact solutions of wave functions fully consist with the properties of the potential. | |
dc.language | en_US | |
dc.publisher | SPRINGER | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.source | Journal of Mathematical Chemistry volume 58, pages2197–2203(2020) | |
dc.subject | Semi-exact solutions | |
dc.subject | Sextic potential | |
dc.subject | Biconfluent Heun function | |
dc.title | Semi-exact solutions of sextic potential plus a centrifugal term | |
dc.type | Artículos de revistas | |