dc.creatorDong, Qian
dc.creatorSun, Guo-Hua
dc.creatorHe, Bing [Ctr Opt & Informac Cuant, Univ Mayor, Chile]
dc.creatorDong, Shi-Hai
dc.date.accessioned2021-02-05T19:41:39Z
dc.date.accessioned2022-10-18T18:42:55Z
dc.date.available2021-02-05T19:41:39Z
dc.date.available2022-10-18T18:42:55Z
dc.date.created2021-02-05T19:41:39Z
dc.date.issued2020-11
dc.identifierDong, Q., Sun, GH., He, B. et al. Semi-exact solutions of sextic potential plus a centrifugal term. J Math Chem 58, 2197–2203 (2020). https://doi.org/10.1007/s10910-020-01169-4
dc.identifier0259-9791
dc.identifiereISSN: 1572-8897
dc.identifierhttp://repositorio.umayor.cl/xmlui/handle/sibum/7342
dc.identifierhttps://link.springer.com/article/10.1007/s10910-020-01169-4#citeas
dc.identifierhttps://doi.org/10.1007/s10910-020-01169-4
dc.identifier10.1007/s10910-020-01169-4
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4455126
dc.description.abstractWe revisit the one-dimensional quantum system of a sextic potential added with a centrifugal term, V(x)=ax(-2)+bx(2)+cx(4)+dx(6), where the parameters a,b,c and d are arbitrary. We find that its solutions can be expressed as a Biconfluent Heun function H-B(alpha,beta,gamma,delta z), while the associated energy spectrum is determined by the parameter delta. The semi-exact solutions of wave functions fully consist with the properties of the potential.
dc.languageen_US
dc.publisherSPRINGER
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Mathematical Chemistry volume 58, pages2197–2203(2020)
dc.subjectSemi-exact solutions
dc.subjectSextic potential
dc.subjectBiconfluent Heun function
dc.titleSemi-exact solutions of sextic potential plus a centrifugal term
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución