dc.creatorLi L., Banerjee A., Bischof L.F., Maklad H.R., Hoffmann L., Henche A.-L., Bildl W., Schulte U., Essen L.-O., Peeters E., Albers S.-V.
dc.creatorVéliz, Fabián [Centro de Genómica y Bioinformatica, Facultad de Ciencias, Universidad Mayor, Chile]
dc.creatorOrell, Alvaro [Centro de Genómica y Bioinformatica, Facultad de Ciencias, Universidad Mayor, Chile]
dc.date.accessioned2020-08-12T14:11:55Z
dc.date.accessioned2020-08-12T18:13:23Z
dc.date.accessioned2022-10-18T18:42:12Z
dc.date.available2020-08-12T14:11:55Z
dc.date.available2020-08-12T18:13:23Z
dc.date.available2022-10-18T18:42:12Z
dc.date.created2020-08-12T14:11:55Z
dc.date.created2020-08-12T18:13:23Z
dc.date.issued2017
dc.identifierLi, L., Banerjee, A., Bischof, L. F., Maklad, H. R., Hoffmann, L., Henche, A. L., ... & Essen, L. O. (2017). Wing phosphorylation is a major functional determinant of the Lrs14‐type biofilm and motility regulator AbfR1 in Sulfolobus acidocaldarius. Molecular Microbiology, 105(5), 777-793.
dc.identifier0950-382X
dc.identifier1365-2958
dc.identifierhttps://onlinelibrary.wiley.com/doi/pdf/10.1111/mmi.13735
dc.identifierhttps://doi.org/10.1111/mmi.13735
dc.identifierhttp://repositorio.umayor.cl/xmlui/handle/sibum/6897
dc.identifierDOI: 10.1111/mmi.13735
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4454734
dc.description.abstractIn response to a variety of environmental cues, prokaryotes can switch between a motile and a sessile, biofilm-forming mode of growth. The regulatory mechanisms and signaling pathways underlying this switch are largely unknown in archaea but involve small winged helix-turn-helix DNA-binding proteins of the archaea-specific Lrs14 family. Here, we study the Lrs14 member AbfR1 of Sulfolobus acidocaldarius. Small-angle X-ray scattering data are presented, which are consistent with a model of dimeric AbfR1 in which dimerization occurs via an antiparallel coiled coil as suggested by homology modeling. Furthermore, solution structure data of AbfR1-DNA complexes suggest that upon binding DNA, AbfR1 induces deformations in the DNA. The wing residues tyrosine 84 and serine 87, which are phosphorylated in vivo, are crucial to establish stable protein-DNA contacts and their substitution with a negatively charged glutamate or aspartate residue inhibits formation of a nucleoprotein complex. Furthermore, mutation abrogates the cellular abundance and transcription regulatory function of AbfR1 and thus affects the resulting biofilm and motility phenotype of S. acidocaldarius. This work establishes a novel wHTH DNA-binding mode for Lrs14-like proteins and hints at an important role for protein phosphorylation as a signal transduction mechanism for the control of biofilm formation and motility in archaea.
dc.languageen
dc.publisherWiley-Blackwell Publishing Ltd
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceMolecular Microbiology, 2017. 105(5): p: 777-793
dc.titleWing phosphorylation is a major functional determinant of the Lrs14-type biofilm and motility regulator AbfR1 in Sulfolobus acidocaldarius
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución