dc.creatorRosales-Salas, Jorge [Univ Mayor, Fac Humanidades, Ctr Invest Sociedad Tecnol & Futuro Humano, Av Portugal 351, Santiago, Chile]
dc.creatorMaldonado, Sebastián
dc.creatorSeret, Alex
dc.date.accessioned2020-04-08T14:11:55Z
dc.date.accessioned2020-04-13T18:12:56Z
dc.date.accessioned2022-10-18T18:41:08Z
dc.date.available2020-04-08T14:11:55Z
dc.date.available2020-04-13T18:12:56Z
dc.date.available2022-10-18T18:41:08Z
dc.date.created2020-04-08T14:11:55Z
dc.date.created2020-04-13T18:12:56Z
dc.date.issued2018
dc.identifierRosales-Salas, J., Maldonado, S., & Seret, A. (2018). Understanding time use via data mining: A clustering-based framework. Intelligent Data Analysis, 22(3), 597-616.
dc.identifier1088-467X
dc.identifier1571-4128
dc.identifierhttps://doi.org/10.3233/IDA-173708
dc.identifierhttp://repositorio.umayor.cl/xmlui/handle/sibum/6318
dc.identifierDOI: 10.3233/IDA-173708
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4454161
dc.description.abstractIn this work, a data mining framework is proposed to improve the understanding of how people allocate their time. Using a multivariate approach, we performed a clustering procedure, and subsequently a regression analysis to detect which variables influence individual time use for each cluster found. Results suggest that the impact of various sociodemographic variables on sleep and work depends significantly on the characteristics of the individuals analyzed. This suggests that inquiries into time allocation and individual behavior should no longer be limited to discussions focused only on single variables. Based on our results, we recommend that researchers advance their methodological analysis towards a multifactorial approach and include clustering as a fundamental step. Proper identification of the most significant variables involved in time allocation decisions would allow researchers to better analyze and interpret their data and results.
dc.languageen
dc.publisherIOS PRESS
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceIntell. Data Anal., 2018. 22(3): p. 597-616
dc.subjectComputer Science, Artificial Intelligence
dc.titleUnderstanding time use via data mining: A clustering-based framework
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución