dc.creatorSantoro, Karol, I
dc.creatorGomez, Hector J.
dc.creatorBarranco Chamorro, Inmaculada
dc.creatorGomez, Hector W.
dc.date2022
dc.date2022-04-18T17:05:50Z
dc.date2022-04-18T17:05:50Z
dc.date.accessioned2022-10-18T14:53:19Z
dc.date.available2022-10-18T14:53:19Z
dc.identifierMATHEMATICS,Vol.10,,2022
dc.identifierhttps://repositoriodigital.uct.cl/handle/10925/4542
dc.identifier10.3390/math10060942
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4444402
dc.descriptionIn this paper, the Extended Half-Power Exponential (EHPE) distribution is built on the basis of the Power Exponential model. The properties of the EHPE model are discussed: the cumulative distribution function, the hazard function, moments, and the skewness and kurtosis coefficients. Estimation is carried out by applying maximum likelihood (ML) methods. A Monte Carlo simulation study is carried out to assess the performance of ML estimates. To illustrate the usefulness and applicability of EHPE distribution, two real applications to COVID-19 data in Chile are discussed.
dc.languageen
dc.publisherMDPI
dc.sourceMATHEMATICS
dc.subjectsymmetric distributions
dc.subjectnonnegative distributions
dc.subjectkurtosis
dc.subjectmaximum likelihood
dc.subjectCOVID-19 data
dc.titleExtended Half-Power Exponential Distribution with Applications to COVID-19 Data
dc.typeArticle


Este ítem pertenece a la siguiente institución