dc.creatorBravo
dc.creatorV. Hernandez
dc.creatorR. Ponnusamy
dc.creatorS. Venegas
dc.creatorO.
dc.date2022
dc.date2022-03-01T16:05:38Z
dc.date2022-03-01T16:05:38Z
dc.date.accessioned2022-10-18T14:52:38Z
dc.date.available2022-10-18T14:52:38Z
dc.identifierMONATSHEFTE FUR MATHEMATIK,Vol.,,2022
dc.identifierhttps://repositoriodigital.uct.cl/handle/10925/4521
dc.identifier10.1007/s00605-021-01659-w
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4444172
dc.descriptionWe introduce definitions of pre-Schwarzian and Schwarzian derivatives for logharmonic mappings, and basic properties such as the chain rule, multiplicative invariance and affine invariance are proved for these operators. It is shown that the pre-Schwarzian is stable only with respect to rotations of the identity. A characterization is given for the case when the pre-Schwarzian derivative is holomorphic.
dc.languageen
dc.publisherSPRINGER WIEN
dc.sourceMONATSHEFTE FUR MATHEMATIK
dc.subjectPre Schwarzian and Schwarzian derivatives
dc.subjectHarmonic and logharmonic mappings
dc.subjectUnivalence criterion
dc.titlePre-Schwarzian and Schwarzian derivatives of logharmonic mappings


Este ítem pertenece a la siguiente institución