dc.creatorDasilva, Alan
dc.creatorDias, Renata
dc.creatorLeiva, Víctor
dc.creatorMarchant-Fuentes, Carolina
dc.creatorSaulo, Helton
dc.date2020-11-12T13:37:43Z
dc.date2020-11-12T13:37:43Z
dc.date2020
dc.date.accessioned2022-10-18T12:13:07Z
dc.date.available2022-10-18T12:13:07Z
dc.identifierhttp://repositorio.ucm.cl/handle/ucm/3185
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4443440
dc.descriptionThis study investigates three regression models based on the Birnbaum–Saunders distribution. The first model is obtained directly through the Birnbaum–Saunders distribution; the second model is obtained via a logarithmic transformation in the response variable; and the third model employs a mean parametrization of this distribution. The primary objective of this study is to compare the performance of the three Birnbaum–Saunders regression models. The secondary objective is to provide a tool to choose the best model for regression when analysing data following a Birnbaum–Saunders distribution. By using Monte Carlo simulations and the R software, we evaluate the behaviour of the corresponding estimators, and of the Cox–Snell and randomized quantile residuals. An illustration with real data is provided to compare the investigated regression models.
dc.languageen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceJournal of Statistical Computation and Simulation, 90(14), 2552-2570
dc.subjectBirnbaum–Saunders distributions
dc.subjectMaximum likelihood estimators
dc.subjectMonte Carlo method
dc.subjectResiduals
dc.subjectR software
dc.titleBirnbaum–Saunders regression models: a comparative evaluation of three approaches
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución