dc.creatorCamaño Valenzuela, Jessika
dc.creatorOyarzúa, Ricardo
dc.creatorRuiz-Baier, Ricardo
dc.creatorTierra, Giordano
dc.date2020-06-13T23:14:35Z
dc.date2020-06-13T23:14:35Z
dc.date2018-07
dc.date.accessioned2022-10-18T12:07:18Z
dc.date.available2022-10-18T12:07:18Z
dc.identifierIMA Journal of Numerical Analysis, Volume 38, Issue 3, July 2018, pages 1452–1484
dc.identifier0272-4979
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/1861
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4441495
dc.descriptionArtículo de publicación ISI
dc.descriptionIn this article, we analyse an augmented mixed finite element method for the steady Navier–Stokes equations. More precisely, we extend the recent results from Camaño et al.. (2017, Analysis of an augmented mixed-FEM for the Navier–Stokes problem. Math. Comput., 86, 589–615) to the case of mixed no-slip and traction boundary conditions in different parts of the boundary, and introduce and analyse a new pseudostress–velocity-augmented mixed formulation for the fluid flow problem. The well-posedness analysis is carried out by combining the classical Babuška–Brezzi theory and Banach’s fixed-point theorem. A proper adaptation of the arguments exploited in the continuous analysis allows us to state suitable hypotheses on the finite element subspaces ensuring that the associated Galerkin scheme is well defined. For instance, Raviart–Thomas elements of order k≥0 k≥0 and continuous piecewise polynomials of degree k+1 k+1 for the nonlinear pseudostress tensor and velocity, respectively, yield optimal convergence rates. In addition, we derive a reliable and efficient residual-based a posteriori error estimator for the proposed discretization. The proof of reliability hinges on the global inf–sup condition and the local approximation properties of the Clément interpolant, whereas the efficiency of the estimator follows from inverse inequalities and localization via edge–bubble functions. A set of numerical results exemplifies the performance of the augmented method with mixed boundary conditions. The tests also confirm the reliability and efficiency of the estimator, and show the performance of the associated adaptive algorithm.
dc.languageen
dc.publisherOxford University Press
dc.sourcehttps://doi.org/10.1093/imanum/drx039
dc.subjectNavier–Stokes
dc.subjectMixed finite element method
dc.subjectAugmented formulation
dc.subjectMixed boundary conditions
dc.subjectRaviart–Thomas elements
dc.subjectA posteriori error analysis
dc.titleError analysis of an augmented mixed method for the Navier–Stokes problem with mixed boundary conditions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución