dc.creatorBarrios Faúndez, Tomás
dc.creatorBustinza, Rommel
dc.creatorGarcía, Galina C.
dc.creatorGonzález, María
dc.date2020-06-06T04:09:18Z
dc.date2020-06-06T04:09:18Z
dc.date2019-03-05
dc.date.accessioned2022-10-18T12:07:09Z
dc.date.available2022-10-18T12:07:09Z
dc.identifierJournal of Computational and Applied Mathematics, Volume 357, September 2019, Pages: 349-365
dc.identifierhttp://repositoriodigital.ucsc.cl/handle/25022009/1789
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4441423
dc.descriptionArtículo de publicación SCOPUS
dc.descriptionWe consider a stabilized mixed finite element method introduced recently for the generalized Stokes problem. The method is obtained by adding suitable least squares terms to the dual-mixed variational formulation of the problem in terms of the velocity and the pseudostress. We obtain a new a posteriori error estimator of residual type and prove that it is reliable and locally efficient. Specifically, we develop an a posteriori error analysis based on the quasi-Helmholtz decomposition which allows us to prove the so-called local efficiency of the estimator with a non-homogeneous boundary condition. Finally, we present some numerical examples that confirm the theoretical properties of our approach.
dc.languageen
dc.publisherJournal of Computational and Applied Mathematics
dc.sourcehttps://doi.org/10.1016/j.cam.2019.02.019
dc.subjectGeneralized Stokes problem
dc.subjectBrinkman problem
dc.subjectVelocity–pseudostress
dc.subjectFormulation
dc.subjectA posteriori error estimates
dc.titleAn a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución