dc.creator | Barrios Faúndez, Tomás | |
dc.creator | Bustinza, Rommel | |
dc.creator | García, Galina C. | |
dc.creator | González, María | |
dc.date | 2020-06-06T04:09:18Z | |
dc.date | 2020-06-06T04:09:18Z | |
dc.date | 2019-03-05 | |
dc.date.accessioned | 2022-10-18T12:07:09Z | |
dc.date.available | 2022-10-18T12:07:09Z | |
dc.identifier | Journal of Computational and Applied Mathematics, Volume 357, September 2019, Pages: 349-365 | |
dc.identifier | http://repositoriodigital.ucsc.cl/handle/25022009/1789 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4441423 | |
dc.description | Artículo de publicación SCOPUS | |
dc.description | We consider a stabilized mixed finite element method introduced recently for the generalized Stokes problem. The method is obtained by adding suitable least squares terms to the dual-mixed variational formulation of the problem in terms of the velocity and the pseudostress. We obtain a new a posteriori error estimator of residual type and prove that it is reliable and locally efficient. Specifically, we develop an a posteriori error analysis based on the quasi-Helmholtz decomposition which allows us to prove the so-called local efficiency of the estimator with a non-homogeneous boundary condition. Finally, we present some numerical examples that confirm the theoretical properties of our approach. | |
dc.language | en | |
dc.publisher | Journal of Computational and Applied Mathematics | |
dc.source | https://doi.org/10.1016/j.cam.2019.02.019 | |
dc.subject | Generalized Stokes problem | |
dc.subject | Brinkman problem | |
dc.subject | Velocity–pseudostress | |
dc.subject | Formulation | |
dc.subject | A posteriori error estimates | |
dc.title | An a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem | |
dc.type | Artículos de revistas | |