dc.creatorTorres Torriti, Miguel Attilio
dc.creatorGuesalaga Meissner, Andrés
dc.date.accessioned2022-05-16T13:00:25Z
dc.date.available2022-05-16T13:00:25Z
dc.date.created2022-05-16T13:00:25Z
dc.date.issued2007
dc.identifier10.1109/ICIF.2007.4408137
dc.identifier9780662458043
dc.identifierhttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4408137
dc.identifierhttps://doi.org/10.1109/ICIF.2007.4408137
dc.identifierhttps://repositorio.uc.cl/handle/11534/63913
dc.description.abstractThis paper describes a novel technique to obtain radar biases estimates that can effectively reduce mismatches in track association algorithms. This is accomplished by matching ship-borne radar images to geo-referenced satellite images. The matching is performed through the minimization of the averaged partial Hausdorff distance between data points in each image. The minimization rapidly yields robust latitude and longitude position estimates, as well as ship heading and radar biases. The accuracy of the measurements is improved by feeding them into a Kahnan filter, which also yields estimates for the ship's velocity. The method can be employed for automatic radar calibration of bearing and range biases, while it also serves as an alternative effective position sensor for GPS-denied environments.
dc.languageen
dc.publisherIEEE
dc.relationInternational Conference on Information Fusion (10° : 2007 : Québec, Canadá)
dc.rightsacceso restringido
dc.subjectMarine vehicles
dc.subjectRadar imaging
dc.subjectSpaceborne radar
dc.subjectRadar tracking
dc.subjectYield estimation
dc.subjectSatellites
dc.subjectRobustness
dc.subjectVelocity measurement
dc.subjectFilters
dc.subjectCalibration
dc.titleAutomatic ship positioning and radar biases correction using the hausdorff distance
dc.typecomunicación de congreso


Este ítem pertenece a la siguiente institución