dc.creatorCofré Torres Patricio Esteban
dc.creatorCipriano, Aldo
dc.date.accessioned2022-05-13T19:15:14Z
dc.date.available2022-05-13T19:15:14Z
dc.date.created2022-05-13T19:15:14Z
dc.date.issued2007
dc.identifier10.23919/ECC.2007.7068891
dc.identifier978-3952417386
dc.identifierhttps://doi.org/10.23919/ECC.2007.7068891
dc.identifierhttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7068891
dc.identifierhttps://repositorio.uc.cl/handle/11534/63857
dc.description.abstractIn their original formulations, state estimation schemes such as Kalman Filter, do not allow the incorporation of prior information on their physical bounds. This results in a certain probability of generating estimates that are physically impossible. Also, the Gaussian assumption in conventional schemes produces a trade-off between estimation error and estimation speed. This paper presents a solution based on a particle filter for which a bounded a priori parameter distribution is chosen. It is shown that a Beta distribution with hard bounds and adaptive estimation variance can overcome both drawbacks, thus achieving a lower fault detection time delay without increasing the estimation error, compared with the Extended Kalman Filter.
dc.languageen
dc.publisherIEEE
dc.relationEuropean Control Conference (2007 : Kos, Grecia)
dc.rightsacceso restringido
dc.subjectParticle filters
dc.subjectParameter estimation
dc.subjectEstimation error
dc.subjectState estimation
dc.subjectKalman filters
dc.subjectFault detection
dc.titleAn application of particle filter for FDI oriented change detection and bounded parameter estimation
dc.typecomunicación de congreso


Este ítem pertenece a la siguiente institución