dc.creatorTorres Torriti, Miguel Attilio
dc.creatorGuesalaga Meissner, Andrés
dc.date.accessioned2022-05-13T19:15:15Z
dc.date.available2022-05-13T19:15:15Z
dc.date.created2022-05-13T19:15:15Z
dc.date.issued2008
dc.identifier10.1109/ROBOT.2008.4543249
dc.identifier978-1424416462
dc.identifier1050-4729
dc.identifierhttps://doi.org/10.1109/ROBOT.2008.4543249
dc.identifierhttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4543249
dc.identifierhttps://repositorio.uc.cl/handle/11534/63862
dc.description.abstractThis paper presents a robust method for localization of mobile robots in environments that may be cluttered and that not necessarily have a polygonal structure. The estimation of the position and orientation of the robot relies on the minimization of the modified Hausdorff distance between ladar range measurements and a map of the environment. The approach is employed in combination with an extended Kalman filter to obtain accurate estimates of the robot's position, heading and velocity. Good estimates of these variables were obtained during tests performed using a differential drive robot in a populated environment, thus demonstrating that the approach provides a reliable and computationally feasible alternative for mobile robot localization and autonomous navigation.
dc.languageen
dc.publisherIEEE
dc.relationIEEE International Conference on Robotics and Automation (2008 : Pasadena, CA, Estados Unidos)
dc.rightsacceso restringido
dc.subjectRobustness
dc.subjectMobile robots
dc.subjectLaser radar
dc.subjectSensor fusion
dc.subjectFeature extraction
dc.subjectPosition measurement
dc.subjectNavigation
dc.subjectBayesian methods
dc.subjectRobot sensing systems
dc.subjectCurrent measurement
dc.titleScan-to-map matching using the Hausdorff distance for robust mobile robot localization
dc.typecomunicación de congreso


Este ítem pertenece a la siguiente institución