dc.creatorOrchard, M. C.
dc.creatorCipriano, A. M.
dc.creatorCipriano, Aldo
dc.creatorViale, M.
dc.creatorVigliocco, A.
dc.date.accessioned2022-05-11T20:05:40Z
dc.date.available2022-05-11T20:05:40Z
dc.date.created2022-05-11T20:05:40Z
dc.date.issued2001
dc.identifier10.23919/ECC.2001.7075954
dc.identifier978-3952417362
dc.identifierhttps://doi.org/10.23919/ECC.2001.7075954
dc.identifierhttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7075954
dc.identifierhttps://repositorio.uc.cl/handle/11534/63743
dc.description.abstractIn this paper, the implementation of a Model Based Fault Detection and Diagnosis System, that uses fuzzy logic to determinate the nature of the detected faults in rolling mill equipments is presented. The system is built with 4 components which work independently. An Identification module estimates the parameters of a continuous domain second order transfer function model for the process by analyzing the step response. A Predictive model module generates the controlled variable residual which is statistically analyzed in a Detection module. The results of the statistical analysis are fuzzified and processed in a Diagnosis module to determine detected fault's nature. The system is tested using real operation data of a main motor process in order to detect and classify abnormalities into Operation Point Change (OPC) or Process Fault (PF) alarms.
dc.languageen
dc.publisherIEEE
dc.relationEuropean Control Conference (2001 : Porto, Portugal)
dc.rightsacceso restringido
dc.subjectFault detection
dc.subjectMathematical model
dc.subjectFault diagnosis
dc.subjectEquations
dc.subjectPredictive models
dc.subjectStandards
dc.subjectTransfer functions
dc.titleA model based fault detection and diagnosis system for rolling mill equipments
dc.typecomunicación de congreso


Este ítem pertenece a la siguiente institución