dc.contributor | Cabrera Vives, Guillermo Felipe; supervisor de grado | |
dc.creator | Vasquez Venegas, Constanza Paz | |
dc.date.accessioned | 2021-05-03T16:41:35Z | |
dc.date.available | 2021-05-03T16:41:35Z | |
dc.date.created | 2021-05-03T16:41:35Z | |
dc.date.issued | 2020 | |
dc.identifier | http://repositorio.udec.cl/jspui/handle/11594/5383 | |
dc.description.abstract | Brain tumors are one of the leading cancer-related causes of death in all ages. The diversity
of tumor shapes and the varying degrees of the visibility of their edges makes the analysis
of tumors complex. The development of automatic tools can enhance tumor visualization
and improve understanding and support of tumor-focused tasks. We propose an automatic
brain tumor extraction method based on image inpainting. Using weak labels containing
the approximate shape of the tumor, we are able to successfully remove the tumor from
a Magnetic Resonance Image (MRI) by replacing it with non-tumor tissue through a
partial convolution neural network trained over non-tumor tissue regions. Brain tumor
extraction is then performed by calculating the residual between the original MRI and the
reconstructed image without the tumor. The isolated tumor in the extracted tumor image
is amenable to further analysis. To demonstrate the extracted tumor image potential, we
performed tumor delineation using an active contour method. By clearly showing the
tumor, the proposed method is valuable in helping experts come to an agreement when
segmenting biomedical images. | |
dc.language | spa | |
dc.publisher | Universidad de Concepción. | |
dc.publisher | Departamento de Ingeniería Informática y Ciencias de la Computación | |
dc.publisher | Departamento de Ingeniería Informática y Ciencias de la Computación. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.rights | Creative Commoms CC BY NC ND 4.0 internacional (Atribución-NoComercial-SinDerivadas 4.0 Internacional) | |
dc.subject | Diagnóstico por Imagen | |
dc.subject | Cáncer del Cerebro | |
dc.subject | Diagnóstico por Imagen | |
dc.subject | Sistemas de Formación de Imágenes en Medicina | |
dc.subject | Imágenes Tridimensionales en Medicina | |
dc.subject | Industria Innovación e Infraestructura | |
dc.subject | Diagnóstico por Imagen | |
dc.subject | Cáncer del Cerebro | |
dc.subject | Diagnóstico por Imagen | |
dc.subject | Sistemas de Formación de Imágenes en Medicina | |
dc.subject | Imágenes Tridimensionales en Medicina | |
dc.subject | Industria Innovación e Infraestructura | |
dc.title | Deep image inpainting for automatic brain tumor extraction using weak labels. | |
dc.type | Tesis | |