dc.creatorHellouin de Menibus, Benjamin
dc.creatorMaturana Cornejo, Hugo
dc.date.accessioned2020-04-23T14:04:07Z
dc.date.available2020-04-23T14:04:07Z
dc.date.created2020-04-23T14:04:07Z
dc.date.issued2020
dc.identifierDiscrete and Continuous Dynamical Systems 40(4): 2335–2346, 2020
dc.identifier1078-0947
dc.identifier10.3934/dcds.2020116
dc.identifierhttps://repositorio.uchile.cl/handle/2250/174061
dc.description.abstractWe consider a set of necessary conditions which are efficient heuristics for deciding when a set of Wang tiles cannot tile a group. Piantadosi [19] gave a necessary and sufficient condition for the existence of a valid tiling of any free group. This condition is actually necessary for the existence of a valid tiling for an arbitrary finitely generated group. We consider two other conditions: the first, also given by Piantadosi [19], is a necessary and sufficient condition to decide if a set of Wang tiles gives a strongly periodic tiling of the free group; the second, given by Chazottes et. al. [9], is a necessary condition to decide if a set of Wang tiles gives a tiling of Z(2). We show that these last two conditions are equivalent. Joining and generalising approaches from both sides, we prove that they are necessary for having a valid tiling of any finitely generated amenable group, confirming a remark of Jeandel [14]
dc.languageen
dc.publisherAmerican Institute of Mathematical Sciences
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceDiscrete and Continuous Dynamical Systems
dc.subjectSymbolic dynamics
dc.subjectTilings
dc.subjectGroups
dc.subjectPeriodicity
dc.subjectAmenability
dc.subjectDomino problem
dc.titleNecessary conditions for tiling finitely generated amenable groups
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución