dc.creatorBustamante, Sebastián
dc.creatorCorsten, Jan
dc.creatorFrankl, Nóra
dc.date.accessioned2020-06-10T19:11:23Z
dc.date.available2020-06-10T19:11:23Z
dc.date.created2020-06-10T19:11:23Z
dc.date.issued2020
dc.identifierGraphs and Combinatorics (2020) 36:437–444
dc.identifier10.1007/s00373-019-02113-3
dc.identifierhttps://repositorio.uchile.cl/handle/2250/175374
dc.description.abstractExtending a result of Rado to hypergraphs, we prove that for all s,k,t is an element of N$$s, k, t \in {\mathbb {N}}$$\end{document} with k >= t >= 2 the vertices of every r=s(k-t+1)-edge-coloured countably infinite complete k-graph can be partitioned into the cores of at most s monochromatic t-tight Berge-paths of different colours. We further describe a construction showing that this result is best possible.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceGraphs and Combinatorics
dc.subjectGraph partitioning
dc.subjectMonochromatic cycle partitioning
dc.subjectInfinite graphs
dc.subjectBerge-paths
dc.titlePartitioning infinite hypergraphs into few monochromatic berge-paths
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución