dc.creator | Bustamante, Sebastián | |
dc.creator | Corsten, Jan | |
dc.creator | Frankl, Nóra | |
dc.date.accessioned | 2020-06-10T19:11:23Z | |
dc.date.available | 2020-06-10T19:11:23Z | |
dc.date.created | 2020-06-10T19:11:23Z | |
dc.date.issued | 2020 | |
dc.identifier | Graphs and Combinatorics (2020) 36:437–444 | |
dc.identifier | 10.1007/s00373-019-02113-3 | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/175374 | |
dc.description.abstract | Extending a result of Rado to hypergraphs, we prove that for all s,k,t is an element of N$$s, k, t \in {\mathbb {N}}$$\end{document} with k >= t >= 2 the vertices of every r=s(k-t+1)-edge-coloured countably infinite complete k-graph can be partitioned into the cores of at most s monochromatic t-tight Berge-paths of different colours. We further describe a construction showing that this result is best possible. | |
dc.language | en | |
dc.publisher | Springer | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.source | Graphs and Combinatorics | |
dc.subject | Graph partitioning | |
dc.subject | Monochromatic cycle partitioning | |
dc.subject | Infinite graphs | |
dc.subject | Berge-paths | |
dc.title | Partitioning infinite hypergraphs into few monochromatic berge-paths | |
dc.type | Artículo de revista | |