dc.creatorBarbay, Jérémy
dc.creatorPérez Lantero, Pablo
dc.creatorRojas Ledesma, Javiel
dc.date.accessioned2020-05-15T14:10:50Z
dc.date.available2020-05-15T14:10:50Z
dc.date.created2020-05-15T14:10:50Z
dc.date.issued2020
dc.identifierTheoretical Computer Science 815(2020) 270–288
dc.identifier10.1016/j.tcs.2020.01.021
dc.identifierhttps://repositorio.uchile.cl/handle/2250/174740
dc.description.abstractGiven a set B of d-dimensional boxes (i.e., axis-aligned hyperrectangles), a minimum coverage kernel is a subset of B of minimum size covering the same region as B. Computing it is NP-hard, but as for many similar NP-hard problems (e.g., Box Cover, and Orthogonal Polygon Covering), the problem becomes solvable in polynomial time under restrictions on B. We show that computing minimum coverage kernels remains NP-hard even when restricting the graph induced by the input to a highly constrained class of graphs. Alternatively, we present two polynomial-time approximation algorithms for this problem: one deterministic with an approximation ratio within 0(logn), and one randomized with an improved approximation ratio within 0(lgOPT)(with high probability).
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceTheoretical Computer Science
dc.subjectCoverage kernels
dc.subjectBox cover
dc.subjectOrthogonal polygon covering
dc.subjectComputational geometry
dc.subjectHigh dimensional data
dc.titleComputing coverage kernels under restricted settings
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución