dc.creator | Izquierdo, Diego | |
dc.creator | Lucchini Arteche, Giancarlo | |
dc.date.accessioned | 2022-06-07T20:34:08Z | |
dc.date.accessioned | 2022-10-17T15:22:23Z | |
dc.date.available | 2022-06-07T20:34:08Z | |
dc.date.available | 2022-10-17T15:22:23Z | |
dc.date.created | 2022-06-07T20:34:08Z | |
dc.date.issued | 2022 | |
dc.identifier | Journal of European Mathematical Society (2022) 6:2169-2189 | |
dc.identifier | 10.4171/JEMS/1129 | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/185896 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4419957 | |
dc.description.abstract | Let q be a non-negative integer. We prove that a perfect field K has cohomological dimension at most q + 1 if, and only if, for any finite extension L of K and for any homogeneous space Z under a smooth linear connected algebraic group over L, the q-th Milnor K-theory group of L is spanned by the images of the norms coming from finite extensions of L over which Z has a rational point. We also prove a variant of this result for imperfect fields. | |
dc.language | en | |
dc.publisher | European Mathematical Society, Suiza | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | |
dc.source | Journal of European Mathematical Society | |
dc.subject | Cohomological dimension | |
dc.subject | Homogeneous spaces | |
dc.subject | Algebraic K-theory | |
dc.title | Homogeneous spaces, algebraic K-theory and cohomological dimension of fields | |
dc.type | Artículos de revistas | |