dc.creatorIzquierdo, Diego
dc.creatorLucchini Arteche, Giancarlo
dc.date.accessioned2022-06-07T20:34:08Z
dc.date.accessioned2022-10-17T15:22:23Z
dc.date.available2022-06-07T20:34:08Z
dc.date.available2022-10-17T15:22:23Z
dc.date.created2022-06-07T20:34:08Z
dc.date.issued2022
dc.identifierJournal of European Mathematical Society (2022) 6:2169-2189
dc.identifier10.4171/JEMS/1129
dc.identifierhttps://repositorio.uchile.cl/handle/2250/185896
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4419957
dc.description.abstractLet q be a non-negative integer. We prove that a perfect field K has cohomological dimension at most q + 1 if, and only if, for any finite extension L of K and for any homogeneous space Z under a smooth linear connected algebraic group over L, the q-th Milnor K-theory group of L is spanned by the images of the norms coming from finite extensions of L over which Z has a rational point. We also prove a variant of this result for imperfect fields.
dc.languageen
dc.publisherEuropean Mathematical Society, Suiza
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States
dc.sourceJournal of European Mathematical Society
dc.subjectCohomological dimension
dc.subjectHomogeneous spaces
dc.subjectAlgebraic K-theory
dc.titleHomogeneous spaces, algebraic K-theory and cohomological dimension of fields
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución