info:eu-repo/semantics/article
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
Fecha
2016-09-16Registro en:
Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel Emerico; et al.; Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie; Nature Publishing Group; Scientific Reports; 6; 16-9-2016; 1-9
2045-2322
CONICET Digital
CONICET
Autor
Hettich, Mike
Jacob, Karl
Ristow, Oliver
Schubert, Martin
Bruchhausen, Axel Emerico
Gusev, Vitalyi
Dekorsy, Thomas
Resumen
We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.