info:eu-repo/semantics/article
Sodium deoxycholate inhibits chick duodenal calcium absorption through oxidative stress and apoptosis
Fecha
2012-05Registro en:
Rivoira, Maria Angelica; Marchionatti, Ana María; Centeno, Viviana Andrea; Díaz de Barboza, Gabriela Edith; Peralta López, María Elena; et al.; Sodium deoxycholate inhibits chick duodenal calcium absorption through oxidative stress and apoptosis; Elsevier Science Inc; Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology; 162; 4; 5-2012; 397-405
1095-6433
CONICET Digital
CONICET
Autor
Rivoira, Maria Angelica
Marchionatti, Ana María
Centeno, Viviana Andrea
Díaz de Barboza, Gabriela Edith
Peralta López, María Elena
Tolosa, Nori Graciela
Resumen
High concentrations of sodium deoxycholate (NaDOC) produce toxic effects. This study explores the effect of a single high concentration of NaDOC on the intestinal Ca2+ absorption and the underlying mechanisms. Chicks were divided into two groups: 1) controls and 2) treated with different concentrations of NaDOC in the duodenal loop for variable times. Intestinal Ca2+ absorption was measured as well as the gene and protein expressions of molecules involved in the Ca2+ transcellular pathway. NaDOC inhibited the intestinal Ca2+ absorption, which was concentration dependent. Ca2+-ATPase mRNA decreased by the bile salt and the same occurred with the protein expression of Ca2+-ATPase, calbindin D28k and Na+/Ca2+ exchanger. NaDOC produced oxidative stress as judged by ROS generation, mitochondrial swelling and glutathione depletion. Furthermore, the antioxidant quercetin blocked the inhibitory effect of NaDOC on the intestinal Ca2+ absorption. Apoptosis was also triggered by the bile salt, as indicated by the TUNEL staining and the cytochrome c release from the mitochondria. As a compensatory mechanism, enzyme activities of the antioxidant system were all increased. In conclusion, a single high concentration of NaDOC inhibits intestinal Ca2+ absorption through downregulation of proteins involved in the transcellular pathway, as a consequence of oxidative stress and mitochondria mediated apoptosis. © 2012 Elsevier Inc.