info:eu-repo/semantics/article
Traces for fractional Sobolev spaces with variable exponents
Fecha
2017-09Registro en:
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Traces for fractional Sobolev spaces with variable exponents; Tusi Mathematical Research Group; Advances in Operator Theory; 2; 4; 9-2017; 435-446
2538-225X
CONICET Digital
CONICET
Autor
del Pezzo, Leandro Martin
Rossi, Julio Daniel
Resumen
In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p: Ω × Ω → (1,∞) and q : ∂Ω → (1,∞) are continuous functions such that (n − 1)p(x, x) n − sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n − sp(x, x) > 0}, then the inequality kfkL q(·) (∂Ω) ≤ C n kfkL p¯(·) (Ω) + [f]s,p(·,·) o holds. Here ¯p(x) = p(x, x) and [f]s,p(·,·) denotes the fractional seminorm with variable exponent, that is given by [f]s,p(·,·) := inf λ > 0: Z Ω Z Ω |f(x) − f(y)| p(x,y) λp(x,y) |x − y| n+sp(x,y) dxdy < 1 and kfkL q(·) (∂Ω) and kfkL p¯(·) (Ω) are the usual Lebesgue norms with variable exponent.