info:eu-repo/semantics/article
On a paper of Dressler and Van de Lune
Fecha
2020-11-19Registro en:
Panzone, Pablo Andres; On a paper of Dressler and Van de Lune; Springer; Boletin de la Sociedad Matematica Mexicana; 26; 3; 19-11-2020; 831-839
1405-213X
CONICET Digital
CONICET
Autor
Panzone, Pablo Andres
Resumen
If z∈ C and 1 ≤ n is a natural number then ∑d1d2=n(1-zp1)⋯(1-zpm)zq1e1+⋯+qiei=1, where d1=p1r1⋯pmrm, d2=q1e1⋯qiei are the prime decompositions of d1, d2. This is one of the identities involving arithmetic functions that we prove using ideas from the paper of Dressler and van de Lune [3].