info:eu-repo/semantics/article
Two-phase Stefan problem with nonlinear thermal coefficients and a convective boundary condition
Fecha
2021-04Registro en:
Briozzo, Adriana Clotilde; Natale, María Fernanda; Two-phase Stefan problem with nonlinear thermal coefficients and a convective boundary condition; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 58; 4-2021; 1-11
1468-1218
1878-5719
CONICET Digital
CONICET
Autor
Briozzo, Adriana Clotilde
Natale, María Fernanda
Resumen
A solidification process for a semi-infinite material is presented through a non-linear two-phase unidimensional Stefan problem, where a convective boundary condition is imposed at the fixed face x=0. The volumetric heat capacity and the thermal conductivity are non-linear functions of the temperature in both solid and liquid phases and they verify a Storm-type relation. A certain inequality on the heat transfer coefficient h is established in order to get an instantaneous phase change process. We determine sufficient conditions on the parameters of the problem in order to prove the existence and uniqueness of a parametric explicit solution for the Stefan problem.