info:eu-repo/semantics/article
PDMS-based porous particles as support beds for cell immobilization: Bacterial biofilm formation as a function of porosity and polymer composition
Fecha
2010-11Registro en:
Fernandez, Marcelo Raul; Casabona, Maria Guillermina; Anupama, V. N.; Krishnakumar, B.; Curutchet, Gustavo Andres; et al.; PDMS-based porous particles as support beds for cell immobilization: Bacterial biofilm formation as a function of porosity and polymer composition; Elsevier Science; Colloids and Surfaces B: Biointerfaces; 81; 1; 11-2010; 289-296
0927-7765
CONICET Digital
CONICET
Autor
Fernandez, Marcelo Raul
Casabona, Maria Guillermina
Anupama, V. N.
Krishnakumar, B.
Curutchet, Gustavo Andres
Bernik, Delia Leticia
Resumen
The objective of this work is to test the performance of new synthetic polydimethylsiloxane (PDMS)-based bed particles acting as carriers for bacteria biofilms. The particles obtained have a highly interconnected porous structure which offers a large surface adsorption area to the bacteria. In addition, PDMS materials can be cross-linked by copolymerization with other polymers. In the present work we have chosen two hydrophilic polymers: xanthan gum polysaccharide and tetraethoxysilane (TEOS). This versatile composition helps to modulate the interfacial hydrophobic/hydrophilic balance at the particle surface level and the roughness topology and pore size distribution, as revealed by scanning electron microscopy. Biofilm formation of a consortium isolated from a tannery effluent enriched in Sulphate Reducing Bacteria (SRB), and pure Acidithiobacillus ferrooxidans (AF) strains were assayed in three different bed particles synthesized with pure PDMS, PDMS-xanthan gum and PDMS-TEOS hybrids. Bacterial viability assays using confocal laser scanning fluorescence microscopy indicate that inclusion of hydrophilic groups on particle's surface significantly improves both cell adhesion and viability. © 2010 Elsevier B.V.