info:eu-repo/semantics/article
Energy barriers between metastable states in first-order quantum phase transitions
Fecha
2018-02-05Registro en:
Wald, Sascha; Timpanaro, André M.; Cormick, Maria Cecilia; Landi, Gabriel T.; Energy barriers between metastable states in first-order quantum phase transitions; American Physical Society; Physical Review A; 97; 2; 5-2-2018; 023608
2469-9934
1050-2947
CONICET Digital
CONICET
Autor
Wald, Sascha
Timpanaro, André M.
Cormick, Maria Cecilia
Landi, Gabriel T.
Resumen
A system of neutral atoms trapped in an optical lattice and dispersively coupled to the field of an optical cavity can realize a variation of the Bose-Hubbard model with infinite-range interactions. This model exhibits a first-order quantum phase transition between a Mott insulator and a charge density wave, with spontaneous symmetry breaking between even and odd sites, as was recently observed experimentally [Landig, Nature (London) 532, 476 (2016)10.1038/nature17409]. In the present paper, we approach the analysis of this transition using a variational model which allows us to establish the notion of an energy barrier separating the two phases. Using a discrete WKB method, we then show that the local tunneling of atoms between adjacent sites lowers this energy barrier and hence facilitates the transition. Within our simplified description, we are thus able to augment the phase diagram of the model with information concerning the height of the barrier separating the metastable minima from the global minimum in each phase, which is an essential aspect for the understanding of the reconfiguration dynamics induced by a quench across a quantum critical point.