info:eu-repo/semantics/article
Carbonation of mantle peridotite by CO2-rich fluids: the formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada)
Fecha
2018-06Registro en:
Menzel, Manuel D.; Garrido, Carlos J.; López Sánchez Vizcaíno, Vicente; Marchesi, Claudio; Hidas, Károly; et al.; Carbonation of mantle peridotite by CO2-rich fluids: the formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada); Elsevier Science; Lithos; 323; 6-2018; 238-261
0024-4937
CONICET Digital
CONICET
Autor
Menzel, Manuel D.
Garrido, Carlos J.
López Sánchez Vizcaíno, Vicente
Marchesi, Claudio
Hidas, Károly
Escayola, Monica Patricia
Delgado Huertas, Antonio
Resumen
The mantle section of the Advocate ophiolite (Newfoundland, Canada) contains unique outcrops of listvenite (magnesite-quartz), antigorite- and quartz-bearing talc-magnesite rock, and carbonated antigorite-serpentinite. This lithological sequence records the sequential carbonation of serpentinite by CO2-rich hydrothermal fluids. High Cr and Ni contents and preservation of Cr-spinel with a composition similar to that of Atg-serpentinite (molar Mg/Mg + Fe = 0.50–0.65; Cr/Cr + Al = 0.50–0.70), show that the Advocate listvenite and talc-magnesite rocks formed by carbonation of variably serpentinized mantle harzburgite. Replacement of lizardite by magnesite coeval with the breakdown of lizardite to antigorite + brucite and the lack of prograde olivine and magnetite in antigorite serpentinite and talc-magnesite rocks constrain the temperature of carbonation between c. 280 °C and 420 °C. Thermodynamic modelling of carbonation of serpentinite at 300 °C and 0.2–0.5 GPa accounts for the sequence of carbonated rocks in the Advocate complex. Phase relations and petrological observations indicate that the aqueous aSiO2 and aCO2 of the infiltrating CO2-rich fluid were buffered at the Atg-Tlc-Mgs and Qtz-Tlc-Mgs pseudo-invariant points, forming dominantly three-phase rocks by variable extents of carbonation at these pseudo-invariant points. Listvenites formed at large fluid-rock ratio when quartz became saturated in the fluid and precipitated along magnesite grain boundaries and in variably sized tensional veins. The whole rock Fe3+/Fetotal ratio of the Advocate carbonate-bearing sequence decreases with increasing whole rock carbon content, from 0.65–0.80 in brucite-bearing antigorite serpentinite to 0.10–0.30 in talc-magnesite rocks and listvenite. The whole rock iron reduction is associated with an increase in the ferrous iron content of magnesite and the formation of hematite and goethite, indicating a concomitant increase of the fluid oxygen fugacity. The sequence of carbonation reactions is uniquely preserved in three main growth zones characteristic of listvenite magnesite: (i) an inner zone of magnetite-bearing, Fe-poor, Mn-bearing magnesite formed by carbonation of lizardite, brucite and olivine from Atg-serpentinite; (ii) an outer zone of Fe-rich magnesite formed by carbonation of antigorite and in equilibrium with Fe-poor talc; and (iii) an outermost rim of Fe-poor magnesite formed by carbonation of talc. We propose that carbonation of the Advocate serpentinized mantle harzburgite occurred in a supra-subduction upper plate ophiolite by fluxing of slab-derived, CO2-rich fluids channelled along deep faults at the onset of accretion of the forearc basin (c. 300 °C, <0.5 GPa). The rather constant δ18O (11.0–14.4‰ V-SMOW) and relatively low δ13C (−8.9 to −5.0‰ V-PDB) of magnesite throughout the sequence of carbonated rocks in the Advocate complex is consistent with CO2-rich fluids derived from decarbonation or dissolution of organic carbon- and carbonate-bearing meta-sediments, such as those occurring in the underlying Birchy complex — the partially subducted continental margin of Laurentia. Carbonation of serpentinized oceanic or continental mantle lithosphere by reactive percolation of CO2-rich fluids derived from the slab in forearc settings may represent a significant carbon reservoir for the deep carbon cycle.