info:eu-repo/semantics/article
Processing, structural, and biological evaluations of zirconia scaffolds coated by fluorapatite
Fecha
2018-11Registro en:
León, Laura Beltina; Albano, Maria Patricia; Garrido, Liliana Beatriz; Ferraz, Emanuela; Rosa, Adalberto; et al.; Processing, structural, and biological evaluations of zirconia scaffolds coated by fluorapatite; Wiley Blackwell Publishing, Inc; International Journal Of Applied Ceramic Technology; 15; 6; 11-2018; 1415-1426
1546-542X
CONICET Digital
CONICET
Autor
León, Laura Beltina
Albano, Maria Patricia
Garrido, Liliana Beatriz
Ferraz, Emanuela
Rosa, Adalberto
Oliveira, Paulo Tambasco de
Resumen
Highly porous zirconia (ZrO2) scaffolds fabricated by the replication method were coated with fluorapatite (FA). The FA coating was obtained by dipping the ZrO2 scaffolds into stabilized aqueous FA slips having different viscosity values (≤5.0 mPa.s). The influence of the FA slip viscosity and the immersion time on the reduction in the scaffold porosity and microstructure of the coated scaffolds were investigated. Cell spreading and survival of bone marrow-derived stromal cells (BMSC) and pre-osteoblastic MC3T3-E1 cells on the uncoated and coated scaffolds were examined using fluorescence and SEM microscopy, and MTT assay.The FA slip with the lowest viscosity value did not lead to a continuous film along the strut network and the macropores remained uncoated. The slips with the highest viscosity value produced a partial blocking of macropores. The porous structure obtained after coating with slips of 2.2 mPa.s viscosity for 2 seconds exhibited a low reduction in porosity and pore size (400-420 μm), due to the formation of the FA layer, and a continuous film distributed along the strut surfaces. Morphology, spreading, and survival of BMSC and MC3T3-E1 cells over a 7-day culture period evidenced good biocompatibility of FA-coated ZrO2 scaffolds processed by dip coating.